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v 1. INTRODUCTION

In science one of the most important goals is to explain all
the numerous phencmena in nature of varying character by means of a few
basic principles, i.e. to reduce complexiéy to simplicity. Several times
in history, the development of science has reached such stages that one
has believed that the highest degree of simplicity has actually been
achieved. Two important examples are provided by Aristotle's philosophy
and Newton's mechanics, but the further development has shown that
these epochs did not represent final stages but essential "plateauvs” in
the development of science. The natural sciences of today are essentially
built on modern quantum theory and, even if the basic principles have now
a higher degree of simplicity than even before, there are no real reasons
for believing that one has actually reached the "final" stage. Keeping
this important fact in mind, one may still find it very intereSting to in-
vestigate the present "plateau” and to study how far modern quantum

theory is able to explain the basic phenomena in nature.

Classical mechanics.- In order to understand the principles of modern

quantum theory, it may be worthwhile to study the breakdown of classical
physics and the development of the new ideas. At the end of last century,
the mechanical model of the world was dominating physics, and the uni-
verse was assumed to consist of a number of particles moving with res-

pect to each other in accordance with the laws of Newton's dynamics:

My — = K (1)

CNNTEY ® o

where t is the time, my and v = (xk, yk,i Zp ) are the mass and posi-

tion of particle k, respectively, whereas “x& is the force on this particle.
The basic laws are hence second-order differential equations in time.
Introducing the velocity U‘,@ = Mw/cbl» and the momentum ?%‘-"- m\kﬁh y

one can also write (1) in the form:

L, f
:"3% = ) LS &ﬁ = K% } @)
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i.e. as a system of first-order equations in time. If in a given moment

t = to , one knew the position and the momentum of each one of the par-

L (DR P%z Pu (0) ) @)

it would be possible to predict the future of the entire universe as well as

ticles :

its past history. This is the basis for the completely deterministic
mechanical model of the physical world, which left a very small margin

for man and his free will - if any margin at all.
If the system has a potential U =U (ri, LPYRER .} from which

the forces may be derived so that K‘k) = — M‘&U =— ¥ U

the classical Hamiltonian takes the form
H =5 —f—’—— + U (4
373 Jﬁ‘l% ' )

and the equations of motion (2) may then be written in the form

dr, % dpe _ R

b Py, a  ow,

which may be extended also to more general coordinates. The Hamiltonian

(5)

) satisfies the relation dH/dt = 0 &nd is hence a constant of

motion representing the total energy E of the system :

Maxwell's equations. - During the nineteenth century, the theory of

electricity and magnetism went through a rapid development leading to the

establishment of Maxwell's equations:

/

b ¥, =t - M, L DK
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where and a are the charge and current density, respectively

The fofce on a volume element exerted by the electromagnetic field is

given by the force density:




\ t
R = CE + o gxH, (8)
and the behaviour of a system of charg.ed particles is then regulated by

a combination of Maxwell's equations and the classical laws of motion.

The quantum postulate.- The success of this electrodynamics was enor-

mous and of essential importance not only for the scientific but also the
technical development. During these circumstiances, it was rather
remarkable that, at the end of the century, theve was still a rather simple
phenomenon to be explained, namely the temperature radiation from an
ordinary black body. It was shown by Max Planck in 1900 that all the
various experimental eipericnces could be explained fror one and the
same formula, if one made the rathcr drastic.assumption that the energy
of an oscillating electric particle had to be an integer multiple of a
"quantum of energy" ) proportional to the frequency )  of the par-
ticle. The proportionality factor h has been called Planck's constant
and has the value h = ().6252 X 10-27 ergsec, which is an exceedingly
small number from the macroscopic¢ point of view. Planck soon realized
that the quantum postulate would lead to a new way of thinking in physics

and that a complete reformulation of the basic laws would be needed.

The next step in the development followed when Alburt Einstein
in 1905 in one and the same volume of "Annalen der Physik" published
three papers in three different fields which each one represented 2 more
or less complete turning-point in its area. The papers treated the special
theory of relativity including the law of the equivalence between mass and
energy, E = rnc2 , the photoelectric effect, and the Brownian motion.

In connection with the explanation of the threshold phenomenon in the photo-
electric effect, Einstein assumed that the electromagnetic field was
quantized and occured in the form of "wave packets” or photons having

the energy E = hy , where »  is the frequency of the radiation.

Bohr's atomic model. - The success of these ideas made it likely that

the quantum postulate would be of importance also in many other phenomrena
associated with the atomic structure of matter. It should be remembered that,
for both chemists and physicists, the atom had until the end of the nine-

teenth century been "undividable™ v definition. However, after the discovery




of the radioactive decay and the transformation of one atom into
another, the circumstances were changed. Thomson's discovery of the
electron cathcde rays in 1897 and Rutherford’'s results as to the scat-
tering of alpha-particles in matter in 1911 led the latter to propose a
~model in which an atom consists of electrons moving around a small

positively charged "nucleus" carrying the main part of the atomic mass.

The quantum postulate was introduced into this atomic model
by Niels Bohr in 1913 . He had discovered that an angular momentum has

! as Planck's quantum of action h,

the same dimensions ML’Tx
and he introduced the postulate that the electrons in an atom could move

only in certain selected circles around the nucleus fulfilling the condition:

po —mk o

where p is the momentum of the electron, a is the radius of the

circle. and n=1,2,3,... Bohr assumed that each such circle represents
a "stationary state" , with a specific energy, in which the electron does
not emit any electromagnetic radiation and further that, if the electron
jumps from one circle to another, the atom emits radiation with a fre-

quency Y determined by Planck's law, i.e. hy =E, - E, . This

1 2
simple picture combined with the laws of classical mechanics:
2 2 2 2
& _ - P ) =_f__ — & (10)
@ wma 2, L o

where e is the fundamental charge. leads immediately to an explanation
of the spectrum of the hydrogen atom, to a derivation of the famous
Rydberg constant in spectroscopy, and to an understanding of many rela-
ted phenomena. Bohr's discovery opened the new field of atomic struc-
ture, and its importance for the development of modern science can

hardly be overestimated.

Bohr generalized later his atomic model so that it became similar
to a planetary system in miniature with the electrons moving in ellipses
characterized by three quantum numbzrs (n,1,m). In 1918 Sommerfeld
studied the corrections in this model required by the special theory of
relativity and could explain also the fine-structure of the hydrogen
spectrum. This is a good examplc of a "perfect model” which still has

only limited validity.




Using the three quantum numbers (n,1,m), the rules

M= 1,23, 4
L=O)1)<Q.)-,.m“‘t) (11)
o = 2, 4-1,4-2 R S
and Pauli's exclusion principle saying t}{at each ellips (n,1,m) could
contain maximum two electrons, Bohr and his Copenhagen school reached
in the beginning of the 1920's a new understanding of the periodic system
of the elements which led, ampng other things, to the discovery of a new
element (Hf). Using the simple rules that, with increasing atomic number,
the ellipses are filled by one and two electrons after increasing values
of first (n +/) and then n, one could also explain the occurence of the
groups of the transition metals and the rare earth metals which differ only

in so-called "inner shells”.

Bohr's atomic model was constructed for the hydrogen atom and,
even if all attempts to generalize it to give a reasonable quantitative
treatment of even the helium atom so far have failed, it gives apparently

a good qualitative understanding of the entire periodic system.

Matter waves. - A second epoch in quanturn mechanics started in 1924

with the introduction of the "matter waves" by Louis de Broglie. In his
theory of the photoelectric effect, Einstein had in 1905 assumed that the
electromagnetic waves were quantized in form of "wave packets" or
photon having the energy E = h)» , so that there existed a wave-corpuscle
parallellism. Each photon has a vanishing rest mass and a relativistic
mass m determined by Einstein's relation E = mc  , where c¢ is the
velocity of light., Since C = YA is also the velocity of the wave packet,

the photon has a momentum p = mc, for which one obtains the transfor-

mation - .
e B Wy«
R R s M W S

where A is the wave length of the radiation. Generalizing this idea,
de Broglie assumed that the wave-corpuscle parallellism was universal,
and that the frequency )> and the wave length A, of the "matter waves"

were given by the same relations:



W [ h/2 (13)

He chowed that these relations are relativistically invariant and further
that they lead to a new understanding of Bohr's quantum condition .(9),
since substitution of g) = X&/A into (9) gives 2IWq = PQA Li.e. a
circle will be associated with a stationary state if and only if it contains
an integer number of waves, so that the wave pattern is unique. In this
way, de Broglie ob‘tained an explanation of Bohr's otherwise rather

arbitrary "quantum rule".

Introducing the relativistic mass m and the velocity v of the
particle and using the relations E = mc2 and p = mv, one finds that matter
waves have a phase velocity () = )D/\, = E/f) = CJZ/O ,which must
necessarily exceed the speed of light. The phase O( ' of a de Broglie

wave travelling along an x-axis at the time t is given by the expression

= AT (—-— ——)%3) (14)

For a wave packet having reciprocal wave lengths or wave numbers %@ = y)
in the interval (k; k + dk) and frequencies in the interval (1)} P+ (Ll)> )
the phases are situated in the interval (O(;QH—OLN\ with

(LC)( = T ( Xdbe, — 4 d.})> . A "group"” of waves is essentially
characterized by the relation dex = O , i.e. it travels along the
x-axis with a constant phase. For the "group velocity” g = x/t , one

obtains directly

Y _ (9D _ «o
g T ey v Ay

which is a classical formula used also in e.g. hydrodynamics in
studying ocean waves. Using (13), one can also write it in the S1mp1e
form g =dE/dp. From the relation ™ = 00 (1 02'/0 ) ,where
m 1s the rest mass of the particle, follows the relativistic identity

(E/c) -p umoc2 and further




_ AE _ pC®_ omwc® 0
% &0: = e

(16)

Hence the group velogity of the de Broglie waves is identical with the

velocity of the particle.

Wave mechanics. In 1925 modern quantum theory was introduced

independently in three different ways by Schrddinger, Heisenberg, and
Dirac, respectively. In generalizing de Broglie's ideas, Schrodinger
pointed out that the behaviour of waves is usually regulated by a wave
equation. According to (14) and (13), the phase of a matter wave is

given by the expression
X = M(fb—-'-i*.)/% (1)

The physicists and engineers had previously been interested essentially
in "real waves" of the type cos® or sinX , but, in many fields e.g.
the theory of alternating currents, it had tufned out to be mathematically
convenient to deal with "complex waves" according to Euler's formula
60.& = (AN + L4 and to take the real component only at the
end. Anyway, Schrédinger started his work by considering the complex

. ‘ﬂf}'_' _
B,y = ae™ = go i lp=d) 09

Taking the partial derivatives with respect to x and t, he obtained the

relations

S T--F=p, o

which led him to postulate the connections

M 70 4 &4 O

= 2 (20)

f“?Iﬁ%} T Y




representing physical quantities by linear operators. In order to pro-

ceed, Schrodinger started from the classical laws of motion in the
Hamiltonian form (6) or (H - E) = 0 and postulated the existence of a

wave equation of the form (H - E)y = 0 , where the classical quantities

are replaced by operators according to (20). The basic Schrédinger

equation has hence the form

h OB »
Rk =~ 5

where Hop is the Hamiltonian operator obtained from the classical

Hamiltonian by means of (20) or the more general relation:

M D ™ i) N
P T {\fbx%’ "bidw”bz,k‘» = V,& ) (22)

and 2& is the "wave function” in the configuration space (r_l, ry, .- ).

From (4) one obtains hence the following operator
| 2 -
== e 23
%P,T Z T V. + U (23)
2’ -
where *(B/%X,J’ +(\01/b 2 +cb%2i is the Laplace operator

ﬁ.
for the part1c1e k .
The Schrodinger equation (21) is a "diffusion equation” of a type
studied also for a long time in classical physics, and it permits separation
of the coordinates ri,r ... from the time variable t . Putting

é(n\) é(_nn)”z )" > %{\*> ) one
obtains L.;l,eé] % é [.___‘a%/b*‘l and, after division by é

XL _ i}u Cé%L (24)
‘5?2. %/ )

where the left-hand member depends only on the coordinates and the
right-hand member only on the time variable t ; both must hence be equal
to a constant E'. The function g has consequently the form
p—
%(,}} = Qo GJ)LF (——!XMI’. vg’/j/\,) , whereas é must satisfy the

ditfe rentiaq equation




e = B2 |

2
which has the form of an eigenvalue problem. The intensity [ zg }

(25)

of the wave was intepreted by Schridinger as proportional to the particle
density of the system in the configuration space UZ‘) 712) 713 yor )

at the time t, and this quantity should hence be integrable over the
entire space or, at least, stay finite even at infinity The differential
equation (25) has certainly solutions for all values of E” but, of all

these solutions, only a few satisfy the physical boundary conditions

associated with Schrédinger's sinterpretation of This leads to a

natural quantization of the energy E” without any integer-rules.

The solutions connected with the separability condition have the

form :

_ A

§(n|)nz>~- . )2’> = @(ﬂ,)HL)... )306 v

(26)

and, for the associated intensity, one obtains

B (yn,,. D)

which implies that the particle density ie independent of time and that

)

= \30\Q’i§@ls)nz)-w>\% (27)

the solutions correspond to "stationary states"-in the sense of Bohr.
From the Schrédinger equation (21) follows hence the existence of the
stationary states provided that the eigenvalue problem (25) has solutions
corresponding to the proper physical boundary conditions which appa-

rently replace the previous "quantum conditions"

One of the most interesting aspects of the Schrodinger equation
(21) is the fact that it is of first-order in the time variable t in contrast
to the second-order Newton equation (1). In some way, it must instead
be analogous to the classical first-order system (2) in the variables
R\))Uz,).._. and ‘F
wave function é = }g(n‘)nz Yo ,@3 , which consists of a pair

of real functions, will give information about the physical situation not

iy P,_.> ... ,and it seems likely that the éémplex

only,in the coordinate space (:71,) 7!,_).« \) but also in the momentum

space (GDI ) fl y 1 ) . This problem will be discussed in greater




detail in the following section.

The existence of the ' matter waves" was shown experimentally
in 1926 by Davison and Germer. Schrédinger showed further that his
= W<

momentum operator ‘65 —— 0/‘10)(1 satisfied the commutation relation
A
X\/ 7

f” — XP = o (28

which had basic importance in the matrix mechanics developed by
Heisenberg, Born, and Jordan and in the g-number theory developed
by Dirac, and that the three formulations of the new quantum theory
were essentially equivalent. The time had now come for a complete

reformation of the basic laws of physics and chemistry.

2. COORDINATE SPACE AND MOMENTUM SPACE;
PHASE PROBLEM IN QUANTUM MECHANICS.

Fourier-transformation. - Let us start by considering a single particle

in a one-dimensional space with the coordinate x. The physical situation
is characterized by a complex wave function ¢ = Y(x.t), in which the
variable t will be temporarily supressed. Such a wave function may
be resolved into harmonic waves with the wave number )‘(,Q,‘—' VAJ by

means of the formulas:

e oTii kX |
25U> - /Q(M © e (29)
— ek
) - / Be M
and the functions  (x) and (k) are said to be related by a Fourier

transformation. Accorsling to the de Broglie relations (13), one may
introduce the momentum p by the formula = l/\,/}\ = M% and,

putting @(0:3 :M‘:/L'Yl(w> , one obtains

-V oo 2
Zﬁ(x) = X, /C%)) e » ¥ de 50)

.2.n‘m

/z.S(x O

<W4

$(p)




It is evident that ¢ (x) and (P (p) in these reciprocal formulas are
completely equivalent and, since qu (x)[ is assumed to be proportional to
the particle or "probability” density in the x-space, it seems natural to
interpret \CP(@) \QJ as proportional to the probability density in the

p-space.

From the Fourier transformation (3¢) follows immediately

+00 “-o N
2 ' 2
Jleplde = /1wl (31
—D —O /-
i.e. the normalization integrals in the x-space and the p-space are the

same. In the following, we will assume thatthese quantities are equal to

unity. The average position x of the particle is then given by the

/" 1% = /25* Z§M (32)

and, for an arbitrary function £(x), one has similarly

‘%M /*%M R / ) 4{7(&325 di (33)

The probability that the particle has a momentum in the interwal

(p, p + dp) is given by the quantity ‘CP(G‘A)}Q’O\? , and the average
momentum p is defined by the relation:

F =“Zf eEVep = /9T dp G4

From the Fourier transformation (30) follows :

expression

ZW&

X

and further




4/’?»0 “’rc*j %‘_‘:f;
J2§ } e %29/'@ dy = ;g,;yz /-"\Bc'p(.,: ae B & f
/ i —_— g3 t\", ’»“u_: B .
420 “ B
= [o¥ppelpd = F ”

This gives the formula:

f /2 mf,\, ‘)XJ ,) G ode (37)

which implies that p may be calculated ac an average valve in the
x-space according to (33), provided that p ir replaced by an aperator
(%/:m(i,) Ca/b)(, in agreement with (20). For any polynomial function

f (p) , one finds similarly

{p) - /25* L e ) R 63

By using the same technique, one can further show that any average

value f (x) in the x-space may pe evaluated in the p-space by using the

formula
b |
‘%(x) *(@ % TIW op )CP(@&ﬁs , (39)

which implies that the coordinate x in the momentum space may be re-

presented by the operator

S Ay 9 (40)
X ’ 2k ‘bf

in analogy to the first relation in (20).

Using the operator relations, one mav finally deline the overage

value of a polynomial function f (x; p) of both variables % and p , and i

turns out that it is irrele¥ant if the evaluation is carried out in the x-space

or in the p-space as long as one strictly observes the order of all factors

and the validity of the comimutation relation (28).




Scalar products and adjoint operators. - If F is a linear operator in the

symbols x and p , one defines finally its expectation value in the

physical situation characterized by the normalized wave function ¢ by H(%

the relation

¥ - jZ}S*?’?ZSO‘bo ' “

For the sake of brevity, we will in the following use the Dirac bracket
symbol for the "scalar product” of two wave functions 4;1 and x,bz

considered as "vectors”!
+uo

<BNG> =S8, 0w,

and remember that the same quantity by the mathematicians are denoted
by ( Lpz, 411 )}, so that one has the tran‘slation (412, 411) = <L111 ]\p2> .
~ /2.’

The quantity N?gn = <2§l 2>> is said to represent the length
of the vector ¢ , and one has ‘\Z,SH = O . The normalization implies
|4 || =1. By considering the discriminant of the quadratic form
i 2§| +/¢L 252’ “2' = ) in the real variable/.b , one can easily prove

Schwarz's inequality

REAIRIRERCATIDECHE IS

Instead of (41), one can now write

T IEE STy, @

where , in the last form, one has introduced a " dummy"” bar for the
sake of symmetry. A wave function ¢ for which ”ka ” exists is said

to belong to the domain D_ of the operator F.

F
Expectation values are in general complex quantities. Two operators

F and F~r with the same domain which always have complex conjugate

expectation values, so that

<ZSIVT\Z§>=<2+§PV‘2§>% (45)




for all ¢ in DF , are said to form a pair of adjoint operators. From

the definition (45) , one obtains after some simple algebraic manipulations

the "turn-over rule”

CBIFTIE, Y = <BIFVE DT = »
<’r—’z8\2§2, >

provided that both Lpi and 412 belong to the domain of F. By means of (46),
it is then easy to prove the two basic rules (F + FZ) = FIT + FZT and

t t
(F, FZ) F, F1 .
Of particular importance in physics are such operators A as always

have real expectation values. In such a case, the operator is identical

with #8 adjoint so that AT = A, and such an operator is said to be self -
adjoint or hermitean. It is easily shown that both the position x and the
momentum p are represented by hermitean operators and, by using the
rules for forming the adjoint, one can then test whether an operator

F = F(x,p) is self-adjoint or not.

The properties of the scalar product and the concept of adjoint
and self-adjoint operators are here only briefly reviewed, and for a more
complete treatment we will instead refer to the many special papers on

these subjects. 1)

Uncertainty relations. - The accuracy of a simultaneous measurement of
the position x and the momentum p of a particle in a physical situation
characterized by the wave function {(x) in x-space or its analog < (f)
in p-space may be characterized by the two quantities AX and Aﬁb
defined by the relations

(a0 =/ (=B 1§ -
(A0@>2a :_“Zw(q)_.___?)z(@lz&% (48)

They give a measure of the quadratic deviation of x and p from the

average values X and p, respectively.

~Let us now consider the integral




15 -

L=/ 1 DF+iplpp—F)8 1% 20,

which is positive for any value of the real parameter }L By using (20),
~ partial integration, and the commutation relation (28), one finds the

transformation
- B N AT ,
I= (80— u (P 20, (5

This is a quadratic forni in |U which is never negative, and its discri-
minant _D = (l‘\/lﬂ\') — 4 (AX)z(A(-‘)Q) is hence always negative:
D40 . This gives the inequality

AX/'A(F = ‘%: (51)

which is the famous Heisenberg's uncertainty relation for the simulta-

neous measurement of the position x and the momentum p of a particle.

Let us now consider two general physical quantities represented
by the self-adjoint operators A and B having the expectation values
A=< y|lA]y> and B = <y|B|¢> , and the "uncertainties”  or widths

AR = |l (H°H>2§u) (52)
AR =1 (&) I,
respectively . We note that AH = O , if and only if (A - K) g =0 ,i.e.

if ¢ is a proper eigenfunction to the operator A. By using Schwarz's

inequality (43) and the turn-over rule (46), one obtains directly
CARAR = J(R-TOFN 1(E-B)P N &

> Y| @3y 2
= | I<KE-DY(E-E)>| =
= 1 | <E-DFEEIF >~ L5 | EFDY>| =
L <R |BP> — <B1AD) =

= |<$ [ r3-2R [P | (63)

it

I




which leads to the general uncertainty relation for any pair of operators

A and B:

AR AR = | (Re-BRY| (54)

of which (51) is a special case. In quantum mechanics, one can hence

not expect that two quantities should be simultaneously measurable unless
the associated operators commute, so that AB = BA. I-‘Ioweve‘r, even if
the operators do not commute, there may exist special situations in which
A and B are simultaneously measurable, provided that the expectation

value of the commutator (AB-BA) vanishes in these situations.

Generalizations to several variables.- Ir this section, we have so far

considered only a one-dimensional systerr, but it is now easy to generalize
the results to three-dimensional systems and to several variables to treat
a many-particle system in a configuration space having the composite
position vector R = (7!.)7!2 y .TLM> and the composite momentum
vector P = ( 4 P2y .N') . The Fourier transformation of the wave
function = Zg“{f@) is obtained By repeated use of (30) for each one

of the 3N variables leading to the formula :
P

_ e e
| 2&(‘\’& A BN/_L_-;./é(‘PV&> 6/‘0\/' (&P)
2P =4 PR T (R)

I

where

N

R P = % Ny Pre
(AR) = () (dn,) ... () 56
(aP) = (4p) 42y - (&F‘v) ,

In analogy to (42), the scalar product is now defined by the relation

(8,18, =¢:O/+&§f(R,})_Z§2(R)>&)(&RB (57




where the single integral sign indicates a 3N -dimensional integration
over the entire position space. All the previous results about expecta-

tion values are now easily generalized to many-particle systems.

Phase praoblem in quantum mechanics. - After this preliminary discussion
of the relation between the position space and momentum space, it is
easier to compare the bases for classical physics and quantum mechanics.
It has previously been pointed out that the Schrédinger equation (21) is a
first-order differential equation in time for a complex function
= &(R)}) which depends on the position coordinate

R= (nt)na.) ... My ) alone and the time t, whereas the classical analog
(2) or (5) is a system of first-order equations dealing with both R =

(-7!” 772) N J'l-},)> ' and P = (f')Pg_) -\'P”} . The physical situation
in the position space is fully characterized by the probability density

‘ LR) % )\2’ , but it is clear that, at the same fime, the wave
_fun-ction ‘z_g (R ,}) must contain information about the physical situation
in the momentum space. This is apparently achieved by the complex
character of ,i.e. by the fact that it contains two real functions, for
instance, the absolute value 'é\ and the "phase” arg 5 This "pairdaac ter
of the wave function permits transformations between different reference
scheme, and a typical exan'iple‘is; provided by the Fourier transformation
(55) which connects the R -space with the P -space according to the

following diagram

Position Momentum
space , space
Fourier

t £ i
Wave functions: §KR)}> \Lrans 0rmat1°n7\ é (.F)) }>

L (58)

Probabilities: ‘§ L‘R)}) \2) /{ é(}’, ﬁp’) \2,

e N8

Inequalities

It should be observed that, even if the wave functions %S: and <& are
directly and uniquely connected, this is not true for the corresponding
probability densities, lé"" and \é'b, which are interrelated

only through certain inequalities of the type Heisenberg's uncertainty rela-

tion (51). Since one can only measure probability distributions, one has
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the fundamental problem how wave functions can be determined experimen-
tally, i.e. how one can calculate the wave function (R)J') - or the
equivalent function = (p) ,8-) - from two compatible distributions

5§ (R) + )\?" and | L(P4) |2 . This important problem was once
stated by Pauli ’, but it does not seem to have been fully solved. One can
also ask how one can measure the"phase” of the wave function, i.e. the
quantity arg gs_ , in a uniquely defined phyéical situation? We note that
the classical initial condition (3), i.e. R = R(O} , P=P((0) , for t = ty
in quantum mechanics correspond to the knowledge of the complex wave

function § = éOO{) for t = tb

In many situations in physics, e.g. in the treatment of stationary
states with real Hamiltonians, the eigenfuncticns turn out to be real ,
and the question is whether this means any loss of information. The answer
is no, since the Fourier transformation (55) is still valid and leads to
uniquely definéd momentum functions é . Iibwevér, since Zé* = Q y
the second relation (55) gives FH* (P>= §3(*P> , and vice versa :

*(RY= B (R) (59)

F(P) = B(-P) (60)

r

These relations show that, for real wave functions, the probability distri-
bution in momentum space is necessarily inversion symmetric around origin,

i.e. ‘ = ("P> \?J = ‘é (P> \Q’ . One immediate consequence of

this is, of course,

P=0, (1)

showing that the average momentum is vanishing. The use of real wave
functions has thus important physical consequences and should, by no means,
be considered as a matter of convenience. In connection with scattering
problems and particle beams, one should observe the importance of the plane

wave (18) and the de Broglie phase (17).

The phase problem is well known from many experimental fields
involving radiation, as e.g. x-ray crystallography or laser and maser
technique, and it is probably of still greater importance than is now realized.
In this connection, it is often convenient to distinguish between coherent and
incohere;lt phenomena, depending on whether the relative phase differences

involved are essential or not.




Let us consider a wave function § = 251 +§L which is a superposi-
tion of two terms, 1 and PR For the associated probability density,
one has

1812 = 181218, P 2R 878, T e

which means that, in coherent phenomena, the probabilities are usually

not additive. The last term is called thé interference term and, as a typical
example of coherent superposition, one can mention the diffraction patterns

of electromagnetic waves in gratings etc. In quantum chemistry, a typical
example of coherent superposition of wave patterns is offered by the molecular-

orbital theory of the homopolar bond (e.g. the H, -molecule) in which the

2
bonding orbital ( a + b ) is the sum of the atomic orbitals involved, whereas
the antibonding orbital has the form (a - b). Even the change of sign of

the W -orbital in conjugated systems under reflection in the molecular plane

is a typical phase effect.

As a contrast to the coherent phenomena, one may consider an
assembly of similar systems having different phases. If the average value

of the interference term in (62) vanishes over the assembly, one obtains

PSR F LML @

showing that even the probabilities in such a case become additive. Here
the symbol —~ indicates the formation of an average over the entire
assembly. The assumption of "random phases"” is of particular importance
in treating the so-called transition probabilities, and we will return to these

problems below.




3. SCHRODINGER ECUATION

IS

Superposition Principle. - A basic assumption about the Hainiltonian H

£

in the.Schrodinger equation (21) if that it is 2 linear operato. satisiving

the relations

‘Si'g) ( §§1 - Z’S&\ = ’ﬁ{ xg\ + hll'?, ;\:) :

/ L4 =2 (64)
S« e
Y (XB ), = %Y

where QV is a complex constant. This lesds to an important consequence

for the solutions to (21) known as the superposition principle, tich says

that if J, (’ﬂ and 4 1‘(’3’) are two solutions corresponding to the initial

function 2&(0) and _§2'((\\ at ¢ =0, then

.ZISU> = _2& (+) 2;; (4 (65)

'O ' T
) . . e : BoloN= 2, (0)+ 2 (0)
is another solution corresponding to the initial function & (V)7 g, 1V. 2,007
The proof follows immediately from (21) and (%4) . The superposition
principle emphasizes a very impartant aspect of modern quantuim mecnanics,

3)

book. It is essential for the interference phenomena connected wit! the

(a5
5]

and Dirac™ has chosen it as the {undamental introducicry principle in ni

1

basic properties of the "matter waves" , and il will b2 further discussed

below.

Continuity equation. - Let us start by considering a single parsticie with the

charge e in a physical situation characterized by the wave funciion

2$ = LTL ) s* \ . In Schrédinger's interpretation of quantum inechanics,

the quantity % =& “5’2) represents the charge density , whereas, in

Born's interpretatipn, the quantity IL,‘)I represents it e probability denegitv.

In both interpretations, it seems natural to require th:t the guantity
3 2 . . . . _— :
)L) varies continuously with position ane time and that, in

analogy with hydrodynamics, there exists a continuily equation of the form

DI
>4

L4
where 4y is szid to be the probability Cengity curvent. ro the

"'k" /(;if“‘,‘ /é. = O ,




-

Schrodinger equation and its complex conjugate:

_ 4% _—_-.guy)

My Eﬁ* | (67)
M 0 — %
oo = ()
follows immediately -
dIE1* B %00
Sl RE A »

! -
= B | (P — PF ()
h )
and the condition that the right-hand member should be a " divergence”

puts a rather severe constraint on the form of the Hamiltonian H.

In the case when the particle moves under the influence of a potential
U = U(/1), the Hamiltonian has the form H = (p 2/2 m)+ U and, from (68),

one obtains particularly

‘b{a\flz'____ W L (2§%Ta&a§“2§wq§*> ) (69)

HT 4.0

showing that the continuity requirement is fulfilled and that the probability

density current /A has the form

A = A 2L D— 7§ma?ﬁ*§ .

o (BT qua B Bgwdd

T 1 P 25 + Bpe¥)

If one instead uses Schrédinger's interpretation, the quantity a =ed

(70)

I

11

represénts the charge density current. In both cases, the continuity
equation is interpreted in the same way as in hydrodynamics, and we note

particularly the relation: °*

2 151" = “}_/"*'“’ a0

where V is an arbitrary volume enclosed within the surface F with the

outer normal M . If the surface is put at infinity, one obtains




%\/HMQ’OU)= 0, (72)

showmg that the normalization integral (Ll:ls.p) over the entire volume
is independent of time. Analogous discussions may also be carried out for

many-particle systems.

Heisenberg';s equation of motion. - Let us now consider an arbitrary many-

particle system having the wave function 2§ = ('R))‘-> , Where

= (’7«)712.) e )'LM ) , and let F be a linear operator representing
a physical or chemical quantity. Using the notations (42) and (44) , we
will now study the quantity

BT, - SEFE ), o

where §1 and éz are wave functions taken at the same time
The "matrix element"” (73) is hence also a function of time, and, by using
the Schrédinger equation (21) and its complex conjugate together with the

"turn-over rule" (46) , one obtains

A NFIE Y-
e ri5,y (87 2y <8 T8, 5

= %&M<&§1\t‘é$> o %1% <§1 \‘F\%ngz,> Bl <Z‘g1\%§'\z§z>:
< | B (WTF-FR)+ZH | B, >, o

which is often called Heisgnberg's law of motion. Putting F =1, one gets

the special result that all scalar products <Z§1 \ 1.\> are indepen&e‘nt

of time, if and only if HT = H, i.e. H is self-adjoint or hermitean:

rAIER R e L P
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We note that the condition HTzH is related to but somewhat weaker than
the continuity requirement discussed in the previous section. In the

following , we will always assume that the Hamiltonian is self-adjoint:

ut-u (76)

"

This is also consistent with the requirement that H is the "energy 6perator

and that H always should be real.

Assuming the normalization <§ \ § > 1 , we will- now study
the time variation of the expectation value F of the operator F in the

physical situation characterized by the wave function

(BIFIDY . (77)

Putting B_S._“"‘ §$= § into (74), one obtains particularly

47 - -2"1&
o (RT-FX) + (BJ’— ) (78)

which is the law of motion in Heisenberg's matrix mechanics.

Ehrenfest's relations. - Let us now assume that the system has a potential
7= U()‘LI) R, " N ) and a Hamiltonian of the form (23):

T U o
Ay,
The operator Kk. = — WWU = — V“U‘ corresponds to the classical
force on particle k and is called the "force operator” . From commuta-

tion relations of the type (28) follows further:

Bn, —n, N =2 Pe

.Q,T Mye 7
R Pu — P = 3 K

Putting + =1, and F= P into (78) and using (80), one obtains

(80)

dny | = -

n
é|
e

o 2
& EQ‘ 27
dt

I
~
x

\




which are known as Ehrenfest's relations. The formulas for the
expectation values are closely analogous to the classical laws of motion
(2) , and one may wonder whether the "center” of a wave packet moves
like a classical particle. Substitution of the {irst relation (81) into

the second gives

d,,l)?/ PN
o Lk = K (82)

LYY

in close analogy to {1} . but we note that the "center” represented by
the average position vector ,’Lk moves like a classical particle, if and

only if

K. = K:N ( -im \ (82)

This occurs only for forces which are linear in the positions, i.e. for
potentials U which are guadratic in the same quantities. This implies
that. in a harmonic oscillator field, the center of a quantum-mechanical
wave packet moves as a classical particle. However, in general, one has
2, . and the center of the wave packet moves in a
K«,#’ Kk‘L)z%) . the ve pack v

way which is characteristic for the quantum-mechanical problem.

We note particularly that, for the stationary states defined by the

relations (25) and (26}, all expectation values E‘& and P;‘ are
independent of time. Since the associated time derivatives are vanishing,

one obtains from (81} the relations

fwzo? Kk=0) (84)

showing that the average momentum and the average force are zero

for these states. Such general relations are often very useful.

As an example, we will consider a single particle in one dimension
with the position coordinate x. The kinetic energy has the form
T=p 2/2 m and, according to (48), one obtains for the square of the

width A6> in a stationary state :

[ReS——

e \)2-' - o2 . ;*)7' (85)

(4p)" = F —(FYy-p = am

*

v



The uncertzinty relation (51) takes then the form

or

a2 T (ak)> (86)

showing an important connection between the kinetic energy and the
linear dimension AJX of the system. Since the kinetic energy is
related to the total enercy through the virial theorem ’'. one obtains
information about the system as to important orders of magnitude
which sometimes are remarkably exact. For a three-dimensional

. ) . 2 =
isotropic system, one has instead (AT) = Qom '_../,3 and

,ZTT ~ q ,Lf’ (87)
32> n %

etc. It is interesting to study how close these relations are fulfilled
for the ground state of simple quantum-mechanical systems, as the
harmonic oscillator or the hydrogen atom, and to investigate the

modifications required to treat also excited states.

Let finally F be an arbitrary linear operator which does not
contain the time t explicitly., For a stationary state, the expectation
value F is then independent of time and, according to (78) , one has

the relation

(7 —F2)=0, (89

which is a generalization of (84) . For, convenient choices of F, one

5)

obtains the virial theorem and many other interesting consequences.

A (2w T )/‘ 2 /iR
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Time-reversal. - It is a characteristic feature of the clasvical law

of motion (1) in Newton”s mechanics that it is invariant against rever-

sal of the time axis:
th= -t (89)

If one takes a movie of a system of classical particles aud Liter runs
the movie "backwards", the motions of the particles are =till in accor-
dance with the laws of dynar{)i.cs and make sense. This does noi apply
to movies in general which usually become a2bsurd when rur backwards,
since everything seems to be in confiict with both "common sense” and
the laws of nature. Physical laws which are invariant against time -

reversal are often called primary laws, in contrast to such laws as

require a definite time direction which are called secondary laws.

Let us ceonsider the classical laws of motion in greater detail

in the form (2) or

dn i o -
fk’ = e ‘K;_&’ e (X\ﬂ&lrg v (90)

with the initial condition Ee’, = 71& (C) , ?1«3 = ﬂ(O} for ¢t = 0.
Putting t' = -t, one finds that one has also the reverse solution:

T (F) = A, PRl s Pty

i b

/o ,
’ , / R o f A\ ¢ )
correspoending to the initial condition T = Ew(iﬂ ) 2 oY = %}K(‘u\ X;(SL =0
v a
We note particularly that all the momenta have reverse direction

A

after the time-reversal, but the energy (4) of the systen: stays the same.

Even in quantum mechanics, the transformation (8%) is of
fundamental importance. The physical situation is now described by
a wave function ?15 = é(R ) +)  which is a function of t and the

coordinates R = (73,)7‘;2,) ... My ) alone. In order to studs the

N\
V

situation in momentum space = (P,) f‘,, Yoo o0 one sheovid

3
consider the Fourier-transformation (55) which defines the associated

wave function

——— y
= = '\'P/ *) in momenturn space. By taking

,?_DS(?Z)'&\ L > éﬁ}(?)33 (92)
B s) <~ EX(-P )




showing that this operation also leads to a reversal of the directions

of all the momenta; compare (59) and(60).

Let us now consider the Hamiltonian (23) which corresponds
to the classical case with a potential |J . This Hamiltonian is not
only self-adjoint (&Tz "-EQ\ but even real (5{*: &P ) which means
that it stays the same when i is replaced by -i. From the Schro-

dinger equation (21} and its complex conjugate, one obtains

O 0B
Hp & = — 5 2

¥ )
~N %
Yo B*o . 2B
T+ 21, Ok
If _Z;S = E;S(R) 4 \ is a so{ption to the first equation corresponding
to the initial condition (@ = Q o for t = 0, one finds from the
second equation by putting t'= -t that one has also the solution

TR = $¥w =) s

o/ C %
corresponding to the initial condition Zlé = § 0 for t=0.
Relation (94) is the quantum-mechanical anologue to the classical
formula (91), and it shows that the Schrodinger equation for real
Hamiltonians is invariant against time-reversal, i.e. it is a primary

physical law.

4. SCHRODINGER EQUATION FOR PARTICLES IN
ELECTROMAGNETIC FIELD

Electromagnetic potentials. - Maxwell”s equations (7) form also in

quantum mechanics the basis for the treatment of all electromagnetic
phenomena. Let us start our brief review by introducing the electro-

magnetic potentials <*> and 6



From the equation Wy H =0 iolows the existence of o
vector field @ == 4 (~X'78 z. 3Q.> such that  § = Lok, &
From the equation () ¥ +—{/(,\-A§ /0 . SRUAY
follows further the existence of a scalar meld «wbe = = (£ 5 1 - )

such that E -+ (/VC, )rag/ 'i‘ = e /'W n.d C}” flevee fi=:1r; e the

relations

H = m\hﬂ ) (95)

- _t o4
Eo=—pdt+-T %y

which define the field strengths E. and 3 in terms of the scelax

potential C,B and the vector potential & , It should be observed
that the potentials G'D and §§ are auxiliary quantities which ave
not directly physically measurable. For our discussion, it is con-

venient to introduce the notation

L O
S = “Q*@ﬂ‘*“"“gj‘ (96)

where S is a four-dimensional scalar.

Substitution of the expressions (95) into the Maxwell egrutions

Aio B = TG and ol M= (HT) § + Ul)OR Ayl

and using the fact that, in cartesian coordinates, A G ud = TR

and  Gobowd, = — V QJ-*— WM y  gives imrnediately:
\
DCP'*"-?—S—r—*Lm’g) (97)

-
where H
-3 T
g =v2L2_ .5372
. ® B% %;T-\ ?3/{\-/(54 ' foomd

isth e four~dimensional wave operator with X] = X, Xy Ty, X3 %2,

)
andx4=1ct,




At this point, it is convenient to introduce the so-called gauge trans-

formation:

/ L 0
P = P + ox (99)

Eb,@-)

4 = 4 — gudx

where ?C = )C ()4)3,2) ) is a completely arbitrary real function.
Substitution into (95) and (96) gives

H'-H \ K-, (100)
=8 —ax

showing that the field strengths are gauge-invariant, whereas the

scalar S undergoes a transformation. If one chooses the gauge-
function)C so that E{)L -*—-S one obtains particularly QS/: O

showing that there always exists a choice of potentials for which one

has
Mﬂ+%%‘§-=0)

(101)
which is the so-called Lorentz condition. In the following, we will
always assume that this condition is valid. We note that the gauge
transformations (99) are then restricted to functions )L satisfying
the relation
OX =0
/ (102)

The equations (97) are now simplified to the form

E]CF2~—H°|T§ ;04 = L*J] , (103)

Of particular importance are the solutions known as retarded potentials:

= Teg /t \ .
CP(P ’g’> / Q(Q .7_(/? = Q ; A

4 /P;X 5 /J (Q ’&“‘}l?s{/(,‘}_ RV

L") Trq

-

Q

A}




Since the wave operator B is invariant against the transformation

-
cC — —C 3 one has also advanced potentials containing the

time ~variable ()Q, 4 WVPQ/C 3 and "symmetric potentials™ obtained by
averaging over the retarded and the advanced potentials. The general
solution to (103) is obtained by taking any special solution and adding
solutions C#DO and ﬂo to the homogeneous wave equations DCF‘O =0

and Dﬂo= ]

Single particle in an outer electromagnetic field. - Let us first con-

sider a single particle with ¢charge e in an outer elecircmagnetic
field. In classical mechanics, there is a simple rule for introducing

an electromagnetic field into the Hamiltonian which may be directly
taken over into quantum mechanics. The rule is most easily understood

by considering the relation:

—
st
<O
wn
e

f ==°IT~:»%—Q

which says that the total momentum p is the sum of the kinetic momen-
tum T  and the electromagnetic momentum (e,y\ﬂ . Since the
total energy is the sum of the kinetic energy and the electromagnetic

contribution &‘#ﬁ> one has further

| 2 .

o — : o — (Luo)
N - 2M Tf -+ \-»’Ct:)

| e a\?. L

re x\F = ﬂ) + & <P

1\

)

Ll Sgen
which is the classical Hamiltonian desired. By putting -2 = ‘\'”'./-Q'W"' A
one obtains the quantum-mechanical analogue. We note that the Hamii-
tonian operator is self-adjoint (‘gr{),ff- %\‘f\, , but that it is no longer

real (%{’,*‘#: %&3 , Wwhich is of importance in discussing time-~reversal.

It is interesting to observe that the Schrddinger equation (21)
for a Hamiltonian of the type (106) leads to a continuity ecuation of

the form (66) having the probability density current:

} '(F“X”‘ ~ Ccsxc *\ RN
3 = 20 %Zb Wzi(>+ ZP(“ zP) § ’ o7

which is obtained from (70} by replacing p by W Using Schrodinger s




interpretation of quantum mechanics, one has the identifications

‘) = Ciﬁé‘ (108)

l

O B :L'm 2§*WZ,§ ST

leading to the quantum-mechanical expressions for the charge density
(% and the cuirent density j . By using these expressions in the
wave equations (103) for the potentials, one can then derive the electro-

magnetic field created by the "'matter wave"associated with the particle.

The operator M  for the kinetic momentum T = f’ (& Y
is of fundamental importance in the theory, and we note that it has the

commutation relations

TxT =4 (ed/omc) H

(109)

Using Heisenberg s law of motion (78), it is now interesting to study

the time -dependence of the expectation values 1  and W . One obtains

n

o

s~
e
[
o

ot

-,

l
om
e

-

F o+ & (Tx H—HxT)

-vmc .

where the right-hand member of the second relation is the quantum-
mechanical analogue to the classical Lorentz force {8) in hermitean

form:

4% cH-Hx{) | &
—_— e = Aj
a ?L T o ALC, \a’ X 1 (111)
The equations (110) correspond to the Ehrenfest’s relations (81} in the

case of an outer electromagnetic field.

e

Let us now study the hehavicur of the Schrodinger cquation for
a Hamiltonian of the type (106) under a gauge transformation {99)

A\
V., For the

5

,\

characterized by the real function 7{, /C (X kj, I

basic operators, one obtains the following transformations

‘W—&-“?m% = #*i?

(1:2)



Lad
(4%}
i

and for the Hamiltonian

(cﬁ'/ >:L + ec#p/:: (s

= ;:m( +—~¢31de)C>+ e+ ‘z:“%),

25 25()1 3‘\ be a solution to the or1g1nal Schrédinger equatioa
corresponding to the initial condition ?{) &)0 for t=0. It is now

easily shown that the functlon
2; 2§ ~ (i e/uc ) )é (114

is a solution to the transformed Schrédinger equation

/
/ 0
ge —_— = (115)
ZS 235{, Bs? )

corresponding to the initial condition (Qﬁ%@ QA.C) \
o /70
for t =0.The proof follows from the fact that

T - ¢ s EmeAO) @)
_ a2y _ g (aMie/te) X 5&——&@&'% %% % |

F oY) v, 04

and substitution of these relations into (113) verifies the statement.

(116)

The relation (114) is called the gauge-transformation oi the

wave function. It follows immediately that
2 E
EYCEPIRSEAC AN

showing that the probadbility density in the coordinate space stays

o~
)
—
" |
—

invariant under a gangc transfor*naaon For the kinetic momentumn

one has the commutatlon rehuon

/= (231’4:6/&(,})( -—(Qm:e/&(;)}é: )
T e = T,

(118)




. b} i Coer VT <7 \
and more generally for any polynomial function JW =9 (“u Hz, ‘lg)

Tve/ ——(QM,V“ )
%(T ’T Y >€ X ‘f\Q))C /L/x " ‘-/4(119)

This leads to the relation
RN T S N N ¢ N :
(B0, ) $ = P T 020)

showing that all expectation values of the kinetic momentum will be
gauge-invariant. The formulas (117) and (120) show that the quantum
mechanics based on the Schrodinger equation (115) fulfils the basic

requirement that all physically measurable quantities should in principle

be gauge-invariant . In this connection, it should be observed that the

Hamiltonian H 1is an auxiliary quantity which undergoes the gauge

transformation (113). Using (114) and (120), one obtains further
O g v
()" g =3 "3%%’+ Tb’% % (121)

This relation implies that, in order to discuss "staticnary states”
and properties of energy levels etc., it is convenient to restrict the

permissible gauge transformations so that )C is independent of time.
L

Let us now make a2 few comments about the efiect of a time -
reversal of the type (89). The equations (93) were based on the assump-
] *x
tion that the Hamiltonian was real, i.e. % 3{01? , which follows
U & | r N £ ay 1. o L) . _A-" o C AP
dirvectly from (23) and the fact that 63%\ = 0"0;\ according to (2<4).

This does not apply to the Hamiltonian {106), for which one obtains

* i e

= ————w i S ﬂ >2'+- e c%:) (122)

Even if the outer magnetic field would be static, its presence would
prevent the simple time-reversal previously discussed, unless the
currents producing the vector potential € would also be reversed

in accordance with the general rule that all momenta should change



direction. The non-static case is much more cumbersome for, if
one uses retarded potentials, they go under time-reversal over into
advanced potentials, and vice-versa. This means that, in order to
keep the primary character of the basic laws of quantum mechanics

it would be necessary to use symmetric potentials which are the

average of retarded and advanced potentials. We will discuss these

questions further below in connection with radiation theory.

Many -particle system in an outer electromagnetic field. -~ Let us now

consider a system of particles having the charges @Q& {{’,.:‘-\):Z) v }
under the influence of an internal potential J = U @IU 7ll) R/ AN >
and an outer electromagnetic field with the potentials <> = <§>L1) 4)
and @ = é (71 JH The Schrodlnger equation for the wave function

Z-S Z§ L’?,)Tl 2y T g % \ takes again the form

—em

~

RA, C\C\N”:} ) ¢
_ ke He B 123)

with the Hamiltonian

a

- J

A N b8 N
s—eﬁf :-U(nnnz,-“”u\ +L€~J <srm (P‘Q 6% ‘;L\,\) +e({5¢ | } (124)

which is formed by a generalization of the simple rule given in the

previous section; here we have used the abbreviations

P =P 4) @, = 601, &) (125)

By using Heisenberg’s law of motion (78), one obtains in

analogy to (110) the Ehrenfest”s relations:

7, -
f.&..ka ——T

=




where 'T;;l = B (f(,?é /;’ y} ﬂk is the kinetic momentum for
particle k. It is also interesting to observe that the Schrodinger
equation (123) leads to a continuity equation for the total probability
den81ty ‘ %ﬂ‘ of the form:

N

-

._':_. E
:,4 Z ~ k“dé j (127)

l»—.{

e+ Pyt

in analogy to (70) and?lg”i +This contmuzty equation is valid within

the 3N-dimensional configuration space, but we note that there exists
also a continuity equation in a 3-dimensional space for each one of
the particles separately.

i (do)= da Ay do,

in the configuration space, it is convenient to introduce the notation

is the total volume element

fort

[ ‘. k ) } ) e
RED : e A Kol 128
de, ) Ao dy, day ol o, (128)

which goes over all particles except particle k. The probability

density for finding particle k in the point }L{» at the time t, when
all the other particles have aroitrary positioné, is then given by the

quantity

2 (129)

{\,"(’t ¢> = k}l”/&. k“asu~ "t‘l\l & '{’ ) ;

in a similar way, one introduces the probability density current /3}

for the particle k alone when all the other particles have arbitrary

motions through the relation
g

/ .~ b L T S
{ Lo ; o o, 1 (130
A (%A T A, AU )
Integrating the continuity equation (127) over the coordinates

o Y ) , one obtains
Lo, AN,

R -
of e g3 6f°
So far everything is simple and straightforward. The crucial

3

(131)

problem is to find the true charge density \& and current density

of the many-particle system to be used in evaluating the electromagnetic



potentials created by the 3N-dimensional matter waves. In the historical

6)

development of quanturm mechanics”/, it seemed natural to assume that
i
Ci Yio and €, 4. would be the contributions from particle k
U AW 2y, &
to the charge density and current density, respvectively, and to make

tentatively the ideatificotions:

N ‘
- : . 5T ' ¢
\) @Z) + > T L 61& Xk’ L/‘l el \, ) (132)
w27

. . L /

i = N AL 4 ;
FUL = o € A ) |

We note that, for €= (“,, e -“~'-(‘L",J , the charge density is

essentially identical to e diagonal element ¢f the reduced first-order

density matrix rreated in modern many-particle theory.
y

By combination of (132} and (103), one can honce study the

electromagnetic field creatgl by 2 system of matter waves and, by
. . . 1. 3} . ~ ey .
introducing the potentials ':7’!/“ and %3 into the Schrédinger equation

(123) with the Hamiltonian (124), one can investigete he =ffect of the

B}
LN

field on the matter waves. This coupiing of the ecuativns leads necessarily

to a problem which is formally of 3 non-linear character.

So far, there are only & {ew many-particie avetens which have
been treated with sufficient acouracy to parmit a real comparison
between theory and experimental experience. The theoretical data for
the ground state and lowest excited states of the heiium ztom and the
hydrogen molecule obtained by Hylleraas, Kinoshita, Pekeris etc?)

and by James and Coolodge, Kolos and Roothaan etcs)

, respectively,
show that Schrodinger s idea about a wave equation in configuration
space seems to lead to results in complete zgreement with experimental
experience. At the same time,the form of the Coulomb potertizl isno langer
derived from the average charge density ¢ defined in (132). It seems
hence evident that the.question of the nature of the electromanneiic

field generated by the matter waves has a more complicaied character
than is indicated above. Using the formulism of second gquuantization,

. these problems are treated in the new field of guantum eizciradys

T e e ot 1o i

which deals with modern radiation theory as well as the wveiy difficult

los themasives and

»
problem of the nature of the elomentary par
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£
their "self-interaction". Even if the progress in this area has been
considerable during the last two decades,there are still many funda-
mental problems to be solved, particularly in connection with the

relativistic formulation of the theory.

In this paper, we will confine our interest to the much simpler
probhlem of solving the Schrddinger eq{lation for a given fixed Hamil -
tonian. This Hamiltonian may contain an outer magnetic field and a
given interaction between the particles, and it is assamed that the

problem has strictly a linear character.

5. EVOLUTION OPERATOR

The main problem in the quantum theory of a time-dependent
system is to find the solution & = é (R f 4’) to the Schridinger

equation
ZS |
' )k E S{f ,‘é‘ (133)

TM

which corresponds to the initial condition §= éo at t = ty- Here
R={(m,n,, M) is the space-coordinate of the many -particle

system, but the problem can, of course, also be treated equally well

. in the momentum space. The space-coordinate will in the following

often be surpressed, and the main emphasis is put on the time depen-
dence of the wave function. One can write the connection between

(d)  ana ;§0 symbolically in the form

ZE (4) = Ul445) ZL a3

Since the Schrt‘:dinger equation (133) is linear and there exists a super-

position principle (65), sae can conclude that 7 youst ke 2 linear

operator.
Since U describes the iime d lependence of the system
completely, it is called the "evolution operator”. From the definition

follows immediately the relafion

Uldy, o) = VP a0 Ul 2 o



for 40 = 21 = 1&2, , which is the multiplication law characteristic
for the evolution operator. One has further U ( x?»o) g{o > = ﬂ s

where the symbol 1 means the identity operator.

The Hamiltonian is assumed to be self-adjoint, %‘(/T = Q-?/ ,
and this implies according to (75) that the normalization integral is

independent of time. This gives
e .
=< |VTU- 1%, >= 0,

for all %Q , which leads to thu conclusion LTJ( U - /? . Letting

UT work on the relation 52 Ué , one obtains \\ = 1) t’(‘é\

We will now make the specific assumptlon that not only the 1n1t1a1

state 'Z_é but also the final statl@ may be chosen quite arbitrarily,
2

i.e. that there always exists a so that a given 3{5 may be ob-

tained. Since one has now

KB5S~ <B1E> = <oty |uty y- <Ol
<‘§}U'm“-—»1 2> =0,

for all _Zé , one is lead to the conclusion UPU!F = {1 . Under

these assumptions, the evolution operator is hence a unitary operator:

Uty = vuT- 038)

T

X \
Substitution of the relation Q = b ‘@O into the Schroédinger
equation (133) gives

for all Q(

equation

, and the evolution operator fulfils hence the differentiot

0




f
LAl
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1

=

with the initial condition {J = 1 for t = 0. In order to solve this

equation, it is convenient to distinguish between three cases:

1) H is independent of time.

o
S

H depends on the time, but in a commutative way so that

é{{ (Z‘ \)%ﬁk&)_, i‘,\ = %x”_, (‘3'2) ‘\;{(é; ) for all pairs i\)g-m, *&w \

in the interval concerned.

3} H depends on the time in a non-commutative way, so that

in general M (£)%04,) 7 A% (4,

Hamilionian independent of timme. - In the case when the Hamiltonian

H does not contain the time t zxplicitly, one can immediately solve

{140} and represent the evolution operator symbolically in the form

X -,._-ng (-4,
U/\"?”;’S“o) = C

In this case, the evolution operator is translationally invariant on

- . . - p T 1 TN = {4 ; 1
the time axis, i.e. U L‘}'-i—- 1 | )EG + LYy = U (*; *0 \ and it
is easily shown that the reverse is alsc true. For the sake of simplicity.
we will now put "QO = {) ~and the s oluticn (134) rnay then be written
in the form ,
VISP NG { -
‘)(-- , i - ,e/b ':(z \7,?;\ ‘)& v)/\
N = = ! £ (14
&) \x\ e . (142
{ ! . -
introducing the normalized eigenstates \z_g“%\‘n~ Vo of H satisfying
the relation -~% {{ji& =1 fo %= g, v a basis, and assuming that
this basis is complete so that oue has the follow ing resolution of the
identity
— - ‘ !
1 = e SR |
e ety (143
iz, )

where one sums of the discrete sigenvalues and integrates over the

continuous eigerxvalue% one cobtains the spectrzl resclution

RS I e Lraat - / ‘;* }
<X = 2, .,i.,,& e > \i¥, | . and more generally for an

arbitrary functicn f:

{«n\ —

S



This gives particularly for the evolution operator (141)
) .
B AU v |
- < LT (145)
oo ,r’\"_ — ,: l Jj::bu><\§;«) } : S
i

. <5 IR

In ordinary :z;m,we, one na 4 ihe identifications l @lﬂ§ Lo ‘\>
g o

and L 5

3\ - U}J} Sl fo { ) . Substitution of the sum
(145) into (142} gives the formula
j gi

I — .
& ( %i e \ = 2; G/’ | ~le / NS e | E 0 / )

N }

!

which is the famious expansion of the solution into stationary states.
Hernne, one can determine the time dependence of a solution by a study

of the stationary states, and vice versa.

Hamiltonian dependent on time in a commutative way. - In this case,
the Hamiltonian :%?, = Q{f‘\x‘ N ig assumed to fulfil the commutation
relacion

HR(L) = Kl S 147)

-l

. ! . .

for any pair {#,,+,) within the time interval under consideration.
“ s

Starting from (140), it is casily shown that the evolution operator may

be written syrmbolically in the form

i
i
1=
i<
\
&
Paan
By
—
[
=

“he operator is o longer translationally invariant. However, since

il the operators F ) commute, it is possible to introduce the normal -

7:\  of the operator H(0) in such a way that they

Fecomie siomioneou s ergenstates to all the ocperators H(t) satisfying

I8 B (R (149)

T e




-

., = F

. ) - . .
where the eigenvalues —=y,, S ¥/ are now funciions o lime t.

From the resolution of identity = :—2% lf&"m Gk oo obtains
according to (148) the following spectral resciution couoiom
operator: R 2

A /

Y{ ¢ ‘_T - K" \D{?} Co -
U0 = e 7 B B, 1 (so)

f-\
X
\/
S
§
&
o
QJ\
«’!L,
Sb
Hy=
ﬂ/

%
[y
l~’/\

s
o
ooty
h

but that the energy values are now functions of time.

Hamiltonian dependent on time in a general way. - In this case, the

Hamiltonian H = H(t) is assumed to be of such a general charactsy

that the commutation relation (147) is no longer valid, i.e.

H(+H) Hta) #F W(H)R(4) LTS

In order to treat this case, it is cconvenient to transiorm the &} i .
equation (140) into the associated integral equation:
; 1 Nl 7!, , .
Ty = 4 — 2 /Ul
o /z/b \J ! Yo

‘g Y N = U
where we have used the abbreviation U (’i’/‘ g)= U (“ !/ and the

s Cs T A = s . X
initial condition Jk6> ~" . This is a "Volterra~equation of the
second kind", except that the kernel %’{(@,\ is not & simnple fuwnction
of t but a linear operator acting on functions of the spnce-coordingt:

R = (n,) ?LL,. SRgY By substituting the ieft-hand senhoz o0
b L4

(153) for t = ty into the right-hand member, one obtains by rerovio

o, e _r".‘;‘
B N :
» ety LJ.‘I l"
1 S BT Faeie g o T
L 4) = | — = y -:\.x,‘(‘i \ B ST
/ Ay ¢ A :
i}
4 !
3 £,
D f M >}~ i M-y
—— i 4‘(, 4 ‘\" L /’ b X . Y :‘/ i . .
o= Seaiaeanantl B T, 7 ¢ 2 fC TR T i
S R J




In the integrand of each term in this formal series, one has the
condition 4 > }, > ,,3-2 S > )@m , and one gays the factors
in the product (4, )i CONEE 3 (dm Y are arranged in "chrono-

logical order™.

Let us now study the connection between the series (154} and
the expression (i48) which is obtained under the special assumption
(147). For a series of symmetrical terms 1{4/} \ i«’,,'&} TN one

has the general transformation formulas

£
- L= T, IR ]
., . | ., IT » ‘ [
! M“'g, s L.l 'uft*; v A x””“\.% Al e T LEs)
e L e

and similar relations are also valid for integrals. If P is the "Dyson
chronological ~order operator”

/ A AN RN
the time-variables in any product %%H f \%{ o) ‘::ﬁi{‘fm \
L ’ A )

which has the property that il permuies

so that they occur in chronological sequence after decreasiug order,

one has '
4 "E } ’3‘2 "&M‘t
/ / . ’,v /- " wef f " 0 2 T NN wy \
Ak [ dk, J/d}l-xv-«,/ b SO (VW4 B =
g ¢ 0 0
. *
/ / o ‘ . NP o . N
= ;;T .\//’ (Ml ‘,/(w.?: @."Q ‘-—> '% é}g/ k'&‘ \:\%’L&g‘z \ L k:&i, {:‘(X/vi ) E;'
! [ O ‘:’ 0 . 3

According to (154), this gives

oo . SN . ,
Ule)= P 5 2 fansita fosge

meg N N
= ’ \ O . s
o R ‘ b .
- T - T /Q,,LF\{(#,) (157)
L ¢

in analogy to (148). which gives the conrection desived. It is evident
that the series (154) is convergent only under rather Limited conditos,

and it will now be transformes into mor= useful forms.

Interaction Representation. - Let us assuns that ihe Hamiltonian

P . .
%Q/F- iPsJ\ ) may be written in the form
LI

.

H o= V)

j—
(1]

(59
~——




where %BO is the "unperturbed Hamiltonian"and ﬁv?’:‘\,;r(’g’\ is 2
comparatively small "perturbation”. The operator -5":?0 is further
assumed to be independent of time t and to have well-known eigen-
functions ék)o = @kf (R) and eigenvalues E{:. The associated evolation
operator UO has the form

20 :
A @80’8' (159}
_(J‘o = 6 =
— A 2 Oy l
= 2.6~ © ‘%’;><§Ji )
A

and satisfies the differential equation (140) for X :L—\Qg . In order to

proceed, we will now introduce the substitution

U = _Uo Uv (160}

where UV is a unitary operator to be determined. According to {140},

one obtains the differential equation:

Uy 53 = (%o“c\f)vgo‘vv f

a0, ok OV ; SR
Ay L gy
LW, 0 o4 0 Vo
AUy _ (5Tyu ) U
2o Dk LMo Ve 4
It is clear that ‘Uv satisfies a differential equation of exactly

the same type as U but with the Hamiltonian H replaced by the

V, = TIVU = .
omu‘ y — vy d e
= @TQO}VG RO A

The operator 'V;_‘ is said to represent the perturbation in the "iniér-

operator

: . . < g s ips -y /N =
action representation"”. Since U\r satisfies the initial condition {]V T

one obtains from (161) the integral equation:

.4
U, () = 1 %OJV ) Uy ()

—~—
f—
o~
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Iteration leads to the series expansion

«?— 4
UV(M = "m;/\f (* )dﬁ +( Q'i"u m,s\cu A k‘“( 40k

0 0
(164)

’“""’)Jﬂ/& JJVHN V)

which is fundamental for the so-called time-dependent perturbation

H

theory. In analogy to (157), ¢ne obtains the following form for the total

evolution operator: i

—%‘W R,+ VD Fak
U =Pe =7 e

| (165)
2T — 2T ‘
= o A Pe i e -
. 4
.._._".)“JT_L". «& %z J*' J" " - T \
- R m)/d}]&»‘ SV T (). TV )
m=0

The various terms in this expansion will be further discussed below.
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6. REFORMULATION OF QUANTUM THEORY

So far the evolution operatorU has been expressed in terms of
a given Hamiltonian H, but sometimes it seems more convenient to turn
things around and reformulate the fundamentals of quantum mechanics
with J="U (¢; t ) as the basic operator. This may also be of
importance from philesophical point of view, since the evelution
operator U is defined with respect to a finite time-interval (to; t},

whereas H is associated with a differential equation of type {21).

Let us now assume that_ the relation

é (4) = U 4) §\0 (166)

is the fundamental law for the time-evolution of a quantum-mechanical

system, and that J  is linear and unitary:

Ul = yul =1 (167

The evolution operator has an eigénvalue problem of the form:

Ul = Ao

where the eigenfunctions '71;& = {Yi(ﬂ {\R) -}3 depend on
R = (n;)n2_> . )l,\/> and t. The eigenvalues ij = 3} X (+)

are situated on the unit circle \;\m \ = '( and have the form

240 = C/)Lp (A‘")(lp \ N where %(,l- iS Tea]. Si]’](je ’i_’h(g :_}Peratgr
& & ~ w

is normal, one has also U*'ﬂk% = ')f (Yl% , and the eigenfunctions

form an orthogonal system which is assumed to be normalized sc that

<’T(«, !ql{,> = 81,@(/ . The system is further assumed to be complete.
so that '1 =2m ﬁﬂ(\,&><TL%i . This gives the spectral resolution

U= 202, el , o

which substituted into (166) gives the expansion

'\/‘)d%




corresponding to the expansion in "stationary states" (146).
p g P {

Let us now consider an operator Jﬁ_ which commutes with

T so that:

TUA =AU (i71)

. G boa )( N,
For the fexpectatlox} value of /\_ Z one nbtame @A kQ > f
U.ZT;\ l-‘/-\-- IO ZT:) v o= .2! { viAU l e {2 S’?o l‘/:\* % C‘n)o > ) |
i.e. the expectation value (A ig the same ic.; the times to and
t. Such an operator ./ w111 be called a "constant of evolution”,

and its eigenprojectors may he used to classify the degeneracies of

the eigenstates of U

If the evolution operator U exisats in the interval (t: t+dt)
and has a first derivative. one can show the existence of a specific
Hamiltonian H . Differentiating relation (166) with respect t,

one obtains

xS N LN U 'L

.__.-_._.___._“.,... — e el )
At D 2 o T 2, 04 £, (a72)
i.e. the connection
N A
T DT (173)

which defines the Hamiltonian. Taking the time-derivative 01 the

relation U U T = 1 , one obtains the alternative form

1
%fv‘o = O EU (474}

and combination of (173) and (174) gives finally ' = WX the
evolution operator is unitary, the associated Hamiltonian is hence
self-adjoint.

The eigenfunctions "l‘k of the evolution operator *'\ } are

usually not eigenfunctions of the Hamiltonian ¥, and it is instructive
to derive the matrix representation of H with respect to the basis
(Yl%' From the relation (1) """ 2 \qz O follows hv {dk]‘rlp ithe

time-derivative and using (174):
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{175)
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! T # Ve R Ao L2
o, N = < A (10 Y5 sy il
AR ({, g Coap T o U ‘w,/‘}} )< [ 4p |-
[, | U4, jLz/ -"‘;i"_",, \ w / o} '(\ h]

and further

Pout
. “‘,,, r‘:w,‘ > == e |- y (i.. “T'é_;“,\
Q \ l ~A “(Ze/ M“f/z’u l}k e »{v{ '
Hence one has
4
o K TR LA LN
e, =TT Ty Y \{%i i [, & (178)

and subgtitution of this expression into {170) leads to an expansion

closely analogous to (151).

The matrix representation (ng l%{f thl@> will he gtrictly
diagonal, if and only if {v %?/ , i.e. if B is a consiant

r4
kN

) PR

evolution. By using (173) and (167) this condition mav also be

written

@]

G

o~ T o~
5\) MY T C
T \J ; i
. . . . ; e iy
which implies that TJU‘ ) shouid commute with ) (’g"“ CQ)"B ,
i.e. the evolution operajor shovls commute with itself in the extended

interval (t; t+ dt). In this Lotier 22ce, H and U  have simul<

(i79)

i
C_J
(}/}
Mo

taneous eigenfunctions at the iime t, and the eigenvalues of the
‘ £\ I P . : 3 - -

Hamiltonian is given by (174}, The evolution operator description has
many advantages but, so far, the Hamiltonian description has hoen

. . Bl « - -

dominating in quanium reechanice pasiiculariy for systems where H

is easily constructed from classical analogs.

(177)



7. TRANSITION PROBABILITIES.
In order to study the probability distribution over a set of
discrete states as a function of tirne, we will introduce a compieia
. .
set of orthonormal functions TQ) =z {,(R,) as a basis:
R 2
AN C )
) = 04 | ‘150)
RN L *

¥xpanding the wave function 2t> = g LR &3 in this basis, one obinins
i o Py

L= S E,

’ N \ s / ; Y
(R, 4) = ST mYC, (B {181)
&

~ hY
5
wnere cfa (é- y = ~<j‘,l, AN } is a time~-dependent coelficient.
Aoy S (YRR B -
. . o . e S . N,
introducing the relation é}(:@) = U'g-;.ke, the expansion ' =

= Z_\'{' ﬁ,L?Q‘}QjL(’\O\) . and the notation ’U;“p - {F l"‘ggts one

obtains directly ~ -

L g /L 4 VA EREE &Y _
L/m (*) = /\\} e ‘ j.,>.> =S \\k_‘x{ﬂ Ny o =

a N

s L by 7 L {4 I\ N
= - [N : \ ) ;=
\.\)‘ W ‘ l ‘é}_i ) ] ‘p»' \//(‘/ l\O / N
S . {182}
- ‘/‘ {. s 1Y { ‘{— { n o
- ULy G 0) =
ooy —~ .
P \;/»-!A s [ ) / O /) ,
g‘ J?.,e Y L S

which fermuls describes the tirmo-evoluiion of the cecfilcinnts. The
L. Tl 4N e Lt A\ f . R .
gquantities T |4 )T Ff)& ; E are conventionally interpreted as
Y 4: . b e
the probabiig fnp the evantume-iaochanical system in the state
kK charzctevizod by the vave 1oaction T,‘N at the time i, From
{182) we cor Dusinar
.
M oos o ‘ A [ v
T T N Y U A B
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~ N N I3 " !
' Y
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where the last term may be characterized as an "interference term"
between the various states. Using the unitary property of the operator

J expressed in the relations

> jUM/r: %; }ch@r) = }l ’ (184)

& g

— ‘ - Y, (] }
om " Lo Y omie ;N (185)

one finds that
25 T (4) = g;mm =1 (186)

Transgition probabilities. - Let us start the discussion of the inter-

pretation of equation (183) by assuming that at t = t,» the system is
completely in the state characterized by the wave function Trﬂ_ , SO
that ?“(0) = 1 , whereas all other PY/(O> = O . From
(183), it follows that

2,
\ (187)

) = U

)

and the quantity W%m (,&, xﬁ‘o > ,Q is then interpreted as the
probability that the system jumps from the original state ™Yl  to the
state Lk during the time interval (‘co; tj. This interpretation is
obtained in a very special physical situation, and it is then generalized

to more complicated situations:

9
S (;Z« .;@\ = \U (,&-yih\lw (188)
M-yig V0 e\ b
From the unitary properties (184) of the evolution operator follows that

}JL

Z—‘ &Sm-—»mw’o}%»\ B ;-; ’.g(,:m, = 1 ) (189)

e

showing that the total probability that the system either stays in the

state 77 or leaves this state -equals 1. Since all the quantities S



are positive, one has further

< (190)

—

N

- A
< G ,
‘},-r ’20 3 }g
LAV /
which means that transition probabilities can never "biow up”. if
this is the case in an approximate treatment, e.g. ir periuvbaiion
theory, the phenomenon must hance depend on a defect in the

approximation itself.

One should observe that the question of the transition nrobua-
cysas . -
bilities depends essentially on the reference system E‘J*ﬁ\% chosen.
For instance, if one chooses the eigenfunctions ¥ e of the evolution

opérator as a basis, one has <'“Lk¥10\"ﬂk{>:- ;‘VC el and
A=Ay, f101)

| 2 1
}<“UK,\UWL>1 = §L O) Ag#F Ny,

which relation shows that the probability distributior over this specific

}

basis is the same at the times to and t, i.e. remainv siationary.
However, the system as a whole is by no means stationary, and the
evolution from ’co to t 1is insiead described by the phase changes
in the coefficients Ck in (182). In general, the phases play hence
a key role in the descriiiion of the time dependence as one could also

expect from the discussion in Sec. 2.

Random-phase systems. - It has been emphasized in connection with

the quantum-mechanical superposition principle that the interfzrence
term in (62) plays a fundamental role in many basic phenomeuns in
physics and chemistry. However, there are also sitvations where it
is of interest to study asserblies of systems having differcent phases,

where probabilities are.additive in accordance with (63}.

Let us introduce an assembly of systems having the s2me

. 1y
probability distribution _Fi kC» at the time t = to . wihoreas the . phonos
are distributed at randorm re that, in average ovewr the acsenlly, ons
has
’
rd
- ‘/{T { N\ ;
(‘) (lﬂ\} C'[Y{? i 0\ = i /&lj ‘1}[~ Wﬁ. {1 \,‘
‘Z/ \ b \ / /
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By applying this averaging procedure to {183), one obtains

‘ = N7 i3 12> 193
.P-k‘;bx') 4{*‘ {Ok‘,bs’ \i'{/ é\(}) ) (193)
which is the fundamental equation in the random-phase systems. Using

the fact that U is a unitary operator and the definition (188} ¢f the

transition probabilities, one can write relation (193) in the form

: —
Tl =7 (0 27 E,(O>$Q;>;k(yg\) — Rl 2 & () (9

Ll R A
showing that the probability for the occurrence of the system irn the
state k at time t equals the probability at t = ty: plus the
probability that the system would jump from any other state 1 to
the state k under the time interval (to; t) , minus the probability *
that the system would leave the original state k and go over to
another state during the same period. In random-phase systems, the
transition probabilities are hence truly additive, as one could expect

in an incoherent phenomenon.

In a conventional treatment of {194), one would proceed by
assuming the existence of a law of "microscopic reversibility” saying

that S for the time interval (to; t}. In the general

=S
n-rk k—>n )
case, however, one has usually for the unitary operator U

L (195)

| U | 7 1 U |
ol 7 1 Vg |
except in special cases which will be further discussed below. Tven
in the general case, one can now proceed by noting the existencsa of

the relation

. L4 .

L — f3y _ A Y A

1 2. “&ba-w\“-) - ‘ wie! 7 AN I R RNRTTS
o ’ L, : ;

which follows directly from (184). Introducing this reiation into {194}

we obtain

Teh) = E;Q)\, + {P(o')»JP »“0}} <) o)

L de, o I



which is exactly the relation one usually derives by means of the law
of microscopic reversibility. This equation shows that, in general,
there is a flow of probability from levels of higher probability to
levels of lower probability, and, since this flow is always going in
one and the same direction, one can expect that the process should

be irreversible. This is also the case, as we will see below.

Reversible Processes. - The problem of time-reversal has previously

been discussed in some detail, and it has been emphasized that the
basic laws in classical mechahics as well as in quantum mechanics
are reversible in time under certain general conditions and are hence
"primary laws" of physics. According to (93), this applies in the
latter case if a time-independent Hamiltonian H is not only self-
adjoint (HJr = H) but also real:

é@* = %Q) ) | (198)

in which case the process é —> § has the reverse process
% % 0
—_— 2, as outlined in (94).

This problem can now be treated by means of the evolution

operator. From the definition §=U 0 follows directly

2§O= UTé and
éo% = ('01')* é* (199)

In the special case when the evolution operator has the simple form
(141), one obtains

(UJU% =V , (200)

v * \7‘_ .
showing that the reverse process & —> éo is associated

with the same evolution operator and the same Hamiltonian as the
C
original process §0 _— 223_

This result is of interest also for studying the principle of
"microscopic reversibility". If the Hamiltonian is real according to

(198), its eigenfunctions may al(sg be closen real, and we will now



choose even the basis {jk} to consist of only real functions.
Using the relation UT U* , one obtains

Uiy, = Ul = GulUT Iy = <Fol U™ I
- R Y - UE

\ U&% \2) = ‘ UX,% \Q) ) (z02)

which means that, under these specific assumptions, the prin/}ple of

microscopic reversibility is strictly valid.

It should be observed, however, that the wave functions them-

selves have in general complex character in order to describe the

probability distributions in both ordinary position space and momentum
space as outlined in Sec. 2. If one has insufficient information about
the phases, one.has also insufficient information about the physical
situation in general, and any averaging procedure will then usually

lead to equations which are no longer reversible in time, and which

are hence characterized as "secondary laws",

Irreversible processes. -~ As a simple example of an irreversible process,

we will study the behaviour of a random-phase system based on the

umption {i92). The random-phase postulate was first clearly stated

a:

by au119) in connection with a study of irreversible processes, but
it was also used by Diracio) in his formulation of the time-dependent

perturbation theory.

In order to study some of the consequences of the random-phase
postulate (192), we will introduce an arbitrary function L(x) which
. . y/
is convex in the interval ()< ¥ 44 so that L\‘/ (X) > 0

According to Lagrange's mean-value formula, one has
g g ;

2’ N
LA()H-X/L) — L,L)C}-—X,‘,L/()Q = %\\:_l_ L ()L+9/?4,>>-O) (202)



where 04041 . Putting X+ 4, = T?//\O) and X = ‘P{,& \',.L\) )

we obtain

Queg = L{ 4:,(0} LATOF — iR - Tl mLﬁW\} > ()

)

where the equality is valid onlv if h = 0. Using the fundamental
relation (193) and the unitary properties (184) of the svclvtion operator,

one finds

) )
RO DML AL WELD SR

L.Q)

]

21> / > o\ > RN [",
= [ M PR O {R® ]~ 2 TR [T

= 2 LiTol - LRG|
L ' 5y

P ad - >\ ’__7 . %\ - ( ! 'k
Z_A ’-—‘ %—P,k,O))J} - 24 L\; TCDQ i) ’ (206)
& e

Here the equality sign holds only if the initial probabilities Pk(O) are
all the same. The relation indicates hence that, in general, the time
evolution of a random-phase system from t to t is irreversible

and that the quantity % b i-’PL} has decreased.

There are many choices of the convex function L possible,
and the particular form L = xlog x is characterized by ih: faot

that ZR& Ti‘ ij is additive over independent subsystems.
The quantity

S =k o i%i ) (207)

where the coefficient k 1is Boltzmann's constant, is such that

(204)

$L0> v $k-§’> and is sometimes characterized as the 'microentvony”

It is defined over the configuration space associated with 21l ‘e




-

;!Lrticles of the system, whereas the conventional entropy refers to

the ordinary space and may be obtained by a reduction procedure.

As mentioned above, the random-phase postulate has been
used to a large extent in modern quantum mechanics, particularly by
Diraclo) . However, it has considerable weaknesses, since it can be
valid only in a specific reference system and only at a specific time
to. With the evolution in time, the system leaves the pure random-
phase situation, and the same happens if one goes over to another

basis.

In conclusion, it should be observed that the Schrédinger
equation itself may contain irreversible elements in the form of time-
dependent electromagnetic potentials, e.g. retarded potentials.
However, even in the case when the Schrddinger equation is fully
reversible in time, a study of the probability properties of assemblies
may show irreversible features depending on the fact that one has not
complete knowledge of the entire physical situation, i.e. the wave
function including its phase. The question is how these uncertainties
should be properly described., Important work on the irreversibility
problem has during the last decades been carried out by Kirkwood“),

Prigogineiz) , and Bogoliubov13) .

Time-dependence of density matrices. - In concluding this section,

it should be observed that the evolution operator formalism is
particularly useful in treating statistical assemblies described by
density matrices. In the terminology of von Neumann14’ , a system
characterized by a wave function g corresponds to a "pure state”
and is associated with a homogeneousg assembly which has a censity

matrix /' defined by the relation | = ééT or

T7(RAR =B RH DIR, 4D oy

where, for the sake of simplicity, we will choose = t. Since the
wave functions have a time-evolution of the type }2 Ugo ) ’ZIS‘

:‘-ZS_OT UT , one obtains
Ty = Tl @)




for the density matrix of the homogeneous assembly. This relation is
then generalized to define the time behaviour of density matrices in
general. A density matrix | = T_’(R)X- ‘R/)sf-) is essentially

characterized by the following three conditions:

)

=71 =0, TR(m)-1, e

and it represents usually a "mixture" of physical situations associated
P y phy

with wave functions.

In order to study the properties of density matrices in greater
detail, it is convenient to introduce a complete orthonormal basis
{fk} fulfilling the relations (180). In considering the initial time

t = to’ one obtains the expansion

PR 4RO = 5 f R 0 f (R 6

or, in matrix form, 7—0’ = J‘f‘ T’(o)f'r . In analogy to (210), the
discrete matrix  T7(¢) = i[’,”“@)} has the properties T’T= T, > O)
T;L(r)= VI . There exists hence a unitary transformation \'4

which brings ’7(0) to diagonal form m((’) :

VT’_?(O) Vo= m(ﬂ ) (212)
where the eigenvalues n(O)k are real and satisfy the relations
mk’. (0> > O ) 2 m?e (O\) = 1 (213)
” :

One has further T7{0) = V(o) VT and, introducing the wave functions
76% kR) through the transformation

X = f v (214)
one obtains T; z\f T’(O)\jf :zj‘ V' 0 (0) \,TfT: x'Tl(OY/Y,T)i.e.

[~

TR R4 ) = S0 R0 X’




which relation may be considered as the "spectral resolution” of the
density matrix [/ for t= t ; the functions 9{,3&0{) are its
eigenfunctions and the numbers nk(()) its eigenvalues, and one has
- / 7‘{:— /
7‘77(‘% (‘Q%X% . Each one of the terms ,%M.LR>7C% (‘R )
represents the density matrix for a "pure state" having the wave
function )C% (R) , and the sum (215) represents hence a "mixture"”
of such pure states with the weights nk(()) . We note the essential
physical difference between the expansion (215) which is used in
analyzing a general assembly and the expansion (181) which is used

in studying the wave function associated with a "pure state”.

The sum (215) contains usually many terms, and it is reduced
to a single term if and only if np(O) =1, nk(O) =0 for k#p,

in which case one has
, | »
7 (R, LR ) = %r(p\>>(’f (R), (a1

i.e. the assembly is homogeneous and corresponds to a pure state
with the wave function ?(/P(R\) . It is easily shown that an assembly
corresponds to a pure state, if and only if the density matrix

is idempotent, so that 7_72'3—’ 7/,

After this analysis of the density matrix at t = t,s Wwe will
now study the time-dependence defined through the relation (209).

Introducing the time-dependent basis

%%(R;‘g’> = UH)X@(R) : (217)

(%) = U @UT=uxmpxul -
= Xt ) xf(#) |

and the spéctral resolution

77 (R, 4R 4) = %«7‘«02% M, (0) X (R 1) e

(218)
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which shows that the weight factors n and hence the character of the

mixture are independent of time.

For a more detailed study of the properties of the density matrice)s
14

and their use in physics and chemistry, we will refer to von Neumann

and to Husimi 1

8. TIME-DEPENDENT PERTURBATION THEORY

Let us now consider the case when the Hamiltonian H = H (t)

may conveniently be written in the form
\
I, =K, + V) (220)

where V is a small perturbation to the unperturbed system
characterized by the Hamiltonian Ho having the normalized eigen-
functions éko and the eigenvalues .E%_o . In the following, we
will make the choice \ﬁ&: é’ko and introduce the unperturbed

eigenfunctions as a basis and reference system.

The transition probabilities caused by the perturbation \/T are

given by the general formula (188):

S (1018 = (U ()17, 29

and we note that, depending on the condition (190), these quantities can
never "blow up". The absolute values of the unitary matrix U are
always well-behaved, whereas the phases may turn out to be "dangerous"
quantities involving some of the divergence difficulties still associated

with modern quantum mechanics.

It is convenient to treat the perturbation problem in the "interaction
representation” and to express the evolution operator U . in the
product form U= UO" U\f , where 'Uv is given by expansion
(164):

o . J‘(zd\-'l

1 )L )2‘4 _
Uy W)= 2 CE) Sar ) as,. far V) V) V()
6 0

e
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where
&'Kh ‘
Ty T o 4
- vy, - TV e T

For the matrix elements of U one obtains directly:
’~"’ A B oA
(E|V|E D = ¥, \ Uy | > (224)
and consequently
2
\gm-»ﬁou-o} +) = \(é%: ‘ Uy l é‘:?%o > \ o (225)

which is a considerable simplification. Introducing the "Bohr

frequency”
0 R o\ /
))&w = (Exc-“z‘b >/X/\, ) (226)

one obtains similarly for the matrix elements of 'V;-i

CESVESS - et ey e

Using the expansion (222), we will now study the matrixelements

of the operator UV:

=, | U, 18, > BM JMJ‘” LV (90 fgg
= (- 2ty /d.o /ou LW, RGN
R z; (-2 >3/ow / NCRLATI LTS B L8

for varlous forms of the perturbatmn V . The 1nd1ces )f y

are said to refer to so-called "intermediate states’.

Time-independent perturbation. - Let us start by considering the

simplest case when the perturbation is a constant in time, V(’“ _\7
Using (227) and (228), one obtairs directly



£/

. o - _

(B0 B, = 0y, — 4V, S o
o ‘
. i {4y 2@&2, o A Q:-{T“u )%OX ‘\2’ 1
JL‘?%\ T —\]‘ \/ i < — i L & — 1
JANE N \ NG e € 50 . ¢ \ ~

oG e L) a2 SV, QT ¢ (229)
For ))XLQ, =0 , one cbtains so-called "resonance denominators”

but we note that all terms are still regular according to formulas of the

type:

9"‘7’0 77@)7 ! (230)

In the special case when V commutes with H o’ the matrix V)!ﬂ/
is diagonal, and one has further the explicit soluflon
..-2:?‘.’!\,
“——-’\T)L nX"T&/

— A QJ 2’ N
Up= &= o | ey (2L

which often serves as a convenient check.

10) , we will now study the first-order term in
(229) for k¥ 1 in greater detail:

Following Dirac

T4,y
e |- ~ -QJTA: -v' e T 1 -
<&, ) Jv"%—‘?@o Vot TR Y ERTRR (232)

Substitution into (225) gives the transition probability

4— Cra 2Ty
x%l% 4) = = 1T, | e (233)

This quantity oscillates a great deal with time and we observe that,
for a small t= 0, one has a quadratic behaviour §1 " L’*) =
(MU0 Y Ve |42
Of particular importance in physics and chemistry are the
time-proportional transition probabilities, and one may wonder how
they are reélated to perturbation theory. It turns outio) that they are

characteristic for transitions from a discrete level 1 to a series



4

of levels k which are so tight-lying that they form a continuous

band. Such transitions occur e.g. in phenomena where a free particle
is emitted, for instance radiocactivity.
Let us assume that the "band"for the
final state EJ/: covers the energy
interval L,E;—Ai:_ F4+ AT >

and that the density of states is

given by the quantity \)@1\} . Assuming

i/ : g‘Qﬁ, e ﬁmﬂx A"?R‘VY‘CA that the probabilities are additive, cne

obtains for the total transition

probability:
‘E+AE
0 ) (1 i Y —¢
X 4~> Cond U‘) }; gi—w@ (*) xgéﬁkw) \)( “‘w e
(234)

E+AE

— A —(nar (‘t&e Eb ’8/4"!/ T VdE.
= | < VIS _
.i:—/AE hl >] —»_EG)/X&.'L Y( )

; v VIR N 5\
We will assume that the quantities \<§k '-\ﬂél, >l and ‘J/(Ec@ )
are slowly varying functions of Ek: which may be taken outside the

integration. Making the substitution

£l —-F = 27 0 235
T (B E A= &) TR =ds 09

one obtains

A AT AE/ A,

) | 1—ws
S (1) = T %E) ) T e

— W AE/{f
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The integrand is plotted in the diagram bzlow:
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(see Appendix)
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We note that the main contribution to the integral comes from the
environment of the point (&""0 , which corresponds to the energy
resonance R& = ELO between the initial and final states. This
resonance is never completely sharp, however, depending on the

uncertainty relation for the energy and time.

All energy measurements involve some interaction between
the object and the apparaturs which is carried by at least one elemen-
tary particle in the form of a wave packet having the kinetic energy
E = pa"/Z m ana the extensionA)L The time /\»8' needed for the
entire wave packet to enter the measuriug device is approximately
the same ag the time needed to pass through a planc separating the
object from the apparatus, perpendicular tc the motion of the wave

packet. Since the velocity is

> A =@>/m1 p/'mv, one has
i:‘
AU B
w \ (§>/M>A.)& =~ AX  (238)
o 4 3
AX From E=p /2m follows
"Passage of wave packet further AX =p A{F/(WL , which

through a plane". gives AL A4 = Aﬁj U?/‘W\\ Ad =
= Ap Ax =W/uw

and the uncertaint y relation

ANE A4 > ,'%:_ (239)

This implies that, in order to make a measurement of the energy with
a certain accuracy AE , a certain minimum time interval As is
L4

always needed.

~



Let ua now return to relation (236). It is clear that this furmula has a
meaning only if the time interval t is not too short with reference to

the uncertainty relation (239), i.e.

'y
A > T A (240)

which implies that X 4 AE /Iy, >+/2. . With increasing t, the

integral takes quickly its full value according to (237); and one obtains

the final formula

“Si)-»w L*&)‘ HW \V(Mbi g(Z) A , (241)

which is a time-proportional transition probability. Because of (190),

it can only be valid for times t which are not too large, and formula
(241) gives essentially the transition coefficient X le/f‘v) IV, Vige ’Zg )
which enters the decay relation

ATy,
~ & - (242
T X, )

— Y4
with the solution ?b@—) = 'P‘b(o\ e X . The probability of the

levels k in the "band" increases further according to the rule

ACES TPRCUS SR

and we note that the term Y4 in the right-hand member (241)
considered as the first term in the expansion of (1 — -"X”")
The relations (242) and (243) may be obtained by considering also the
higher terms in the expansion (228) but, in reality, the situation is

usually more complicated than indicated here.

Oscillatory perturbation. - Let us now consider a general

perturbation vV y wWhich is a function of time, and let us assume that

it may expressed as a Fourier series:

— a4 Y, A
V=3 e e, o
)( ¢




where the coefficients U’( are linear operators working on the
functions in the R -space. According to (227), one obtains for the

matrix elements of VH

Vo)
<y |V | B> = Z St ><ﬁci0,(l!;> (245)

The matrix elements of the operator UV’ are again given by formula
(228), and we note that, for a perturbation of the form (244), the
time integrations are of an elementary nature and are easily carried

out explicitly. One obtains

T (Vg )() 4

§ = MW, — € 1” L
Ep Uy, ) = g“ 3 )Tf A V= 5% ) el +

e (P~ =P )4
—+ ( 2;“4,> z & b 2 TA — L (246)
o N 4 \ 0
’()1 XAV =) 2% (K= )

21, (P, ‘-)>)‘&
V(m X }(%\U EHICIVN Q/>+

It is interesting to observe that 'resonance denominators” occur for

ATy, ())%x > 2'1\’4_,())0%

0
)),‘ = ))1&?/ and, in the second order terms, also for
0 .
)))(+)7}‘ = ))M.b etc. , corresponding to one- and two-quantum
processes etc. These terms are of essential interest in studying
time-proportional transition probabilities, and the treatment follows

essentially the same lines as given in the previous section.

For the sake of simplicitly, we will study a single oscillatory

term in greater detail:
_ — a4
V= A (247)

Such a perturbation is not self-adjoint, but the result is still typical
for the terms occuring in this connection. Using (246), one obtains
through the first order

213 (Vi) ¥

e PN\ . 2Tk e T (248)
By Uyl D~ =50 Vg o, (V=)




in complete analogy tc {232). This giveg for the associated “ronsition

probab111’cy
6 oo
(4 3 A V)
1,—9},@ w, ' 0| = (249)
b)k@ <) )

and,by studying the transitions from the discrete level 1 to the

continuous levels k having the energy
=, = B+
Sl ~ 4, . ;- (250)

one obtains in analogy to (241):

Ll .

O () = o P ER) A, e
4> und A

which is the formula desired., According to (250), one finds that, from

the point of view of the unperturbed system, this transition involves the

absorption of the energy W from the oscillatory field associated

with the perturbation V. By studying the self-adjoint perturbation

_ — .2574‘,))}«@ DJ“ 4,)) &?'
V =¢e A) -+ @ ‘i’ ’ (252)

one finds also the transition probability for the corresponding emissicn

process.

It is clear that, since the evolution operator in principle describes
all the various time-dependent phenomena in physics and chemistry, we
have here only touched a very small field of applications. The further
study of the evolution operator aud its matrix elements is probably one
of the most important current research problems and, even if very
important progress has been made during the last two decades
particularly in connection with the so-called diagram technique, the

study is still far from being concluded.



9. DISCUSSION

The purpose of this paper is to give a brief discussion of the
treatment of time-dependent phenomena in the non-relativistic quantum
theory. In many of the applications, the theory has been quite successful
and has led to results in complete agreement with the experimental
experience, but there are still certain difficulties connected with the concept
of a complex wave function and particularly the evaluat{ion of its
phase. In the formula for time-evolution Zé_“*) = -U,Zp\’o , it may be
possible to calculate the evolution operator 1J  but considerably
more difficult ot determine the wave function EEO for the initial state.

The phase problem has been discussed in some detail in Sec. 2.

The problem of the behaviour of a many-particle system under
the influence of an outer electromagnetic field can be treated in
principle, but it is more difficult to study the interaction between a
system of matter waves and their own electromagnetic field. The
problem of the self-interactions leads to divergence difficulties in both
the non-relativistic and relativistic formulations of quantum theory,
and the nature of the elementary particles themselves is still completely
unknown. For some time, one hoped that the evolution-operator
formalism would be helpful in solving these problems, particularly
since the absolute values of the matrix elements of U can never
blow up, but it turned out that the difficulties were again connected
with the phases. In scattering theory, the S-matrix given by the
relation

L T (4o —e )
» o= Ul ! (253)

has been studied in many papers with interesting results, but the main
problems associated with the basic divergence difficulties seem still

to be unsolved.

One way out of the difficulties would be to quantize the space-
time coordinates and to introduce a minimum length and a minimum
time. In such a case, one would have to give up the differential form
of the laws of nature which has been characteristic for classical
mechanics (2) as well as wave mechanics (21). We note. however,
that the evolution-operator formalism is based on the use of a
finite time-interval (to; t) . If the Hamiltonian H is time-indepen-

dent, the evolution operator takes the form:




¢

AT 204
L Sy g ep g |
U= * 7 = % e W By 7<F |, (254)
where éjw and E% are the eigenfunctions and eigenvalues of H,
respectively. The eigenvalue relation %%@0 = Emigxﬁ
is certainly a differential equation, but the quantities i-\'{/u and
—EW entering (254) may instead be found by considering the

variational integral:
<A IEY,
<&|F>

Since the expectation value of the differential operator %.. 1‘0% /’?"“‘*f?h\_

5
]

(25

J1

may be evaluated in moementum space according to (38), it is not
necegsary to use any derivatives whatsoever - all the results may

be obtained by integration only. In this way, wave mechanics may

be formulated entirely in terms of integral calculus. Instead of
requesting the wave functions to be continuous and differentiable, it

is now sufficient to require that they should be quadratically integrable.
Whether this change in the character of the theory gives a better
fundament for solving the basic difficulties as to'the nature of the

elementary particles remains to be seen.

The time-dependent Schrédinger equation (21) has deepened the

ry which was previously unconceivable. It has led

to a new model of the inner structure of atoms, molecules, and the solid-
state in excellent agreement with experience. Even of the remaining
difficulties indicate that the theory is still not in its final form, it is
highly useful as a tool for a unified description of numerous phenomena

in nature.



APPENDIX

EVALUATION OF CERTAIN INTEGRALS.

In time-dependent perturbation theory, there are certain definite
integrals which often occur and have to be evaluated. It is convenient

to start from the formula

l+&l , 1+éf2 :

Je 4 AKX dy =

(A1)

which is easily proven by differentiation. Integration over t between

the limits 0 and t gives further:

(.'E 4
—X Coy 4 £— 4w .
JE AN b - e PR A it S G ()
M X 0 {+ .42
By letting (S.. —7 + 2 | one obtains
=]
- —X + X .
/@ /‘__‘.‘_"L___ dy = (ka} X (A3)
0 x Y
Putting x instead of xt and t = 1/u, one has for t»>0 that
+O‘D
— X v Yo ! (A3)
ST ey

Because of the unif orm convergence of the integral, one can easily

put u—7 + 0, which gives the result
O
YA 4y = Al (A4)
§

Let us now return to the relation (A3). Integrating t over the

interval between 0 and t, one obtains

.{Too
S & B a4y = oyt Ly 144) 49
0 ( [

Putting x insteadof xt and t= 1/u, one gets immediately

— X f AL CL by 6
J@ ! x%;)c duy ‘"“4%&}375»5?%3(%’{“) 4o




¢

which, for u—>+ 0, gives:

SAmme y, o X (a7

One has 4 -0} =9 ML%J and, substituting x instead of x/2,
one obtains finally
4o
/ (M)L _ T (a8)
7 X N
These examples may be sufficient to illustrate a general technique

for evaluating definite integrals of this specific type.
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